ITRAC-3 Nuclear Science Training Course with NUCLEONICA
Karlsruhe, May 11-13, 2011

Velko Velev

Institute of Public Health
Ionizing Radiation Department
Skopje, Republic of Macedonia
Established in 2002 in the frame of IAEA Technical Co-operation Project

Purpose:
- Calibration of radiation protection instruments used in:
 - Medicine,
 - Industry,
 - State border control,
 - Education and etc.

Based on the ISO standards 4037-1/2/3

In process of implementation of quality standard ISO 17025 (General requirements for the competence of testing and calibration laboratories)
The main tasks of the laboratory are:

- Through the traceability of higher metrological standard, establishing and maintaining with a national metrological standard of Ionizing radiation dosymetry quantity in term of “Air Kerma” (Kair) (Gy), for photon ionizing radiation only.

- Providing a instruments calibrations for radiation protection to the end users, in terms of:
 - Air Kerma (Kair),
 - Ambient dose equivalent H*(10),
 - Personal dose equivalent Hp(10) and Hp(007).

- Contribution in the process of education to the students and other interested individuals for ionizing radiation metrology.
Instruments can be calibrated at Laboratory
Instruments can be calibrated at Laboratory
Equipments on disposal:

- **Irradiators:**
 - 137Cs irradiator unit type ST OB6, 740GBq-May 2003,
 - X-Ray irradiator with PANTAK 225kV high frequency generator

- **Traceable Standard Instruments:**
 - **Chambers:**
 - 1 x PTW32002/LS01 1 litre volume (secondary std. BIPM/PTB through IAEA),
 - 1 x PTW32003/LS10 10 litre volume (secondary std. BIPM/PTB through IAEA),
 - 1 x PTW32002/LS01 1 litre volume (working std.),
 - NE2575 0.6 litre (working std.),
 - **Electrometers:**
 - 2 x PTW type UNIDOS
Irradiators
1 l. Referent
Ionization Chamber
LS01/32002
10 I. Referent
Ionization Chamber
LS10/32003
Referent Electrometers PTW - UNIDOS
Laboratory capabilities

- Laboratory’s referent ionizing radiation qualities, by the standard ISO 4037-1, includes the next:
 - X-Ray Radiation,
 - (γ)Gamma radiation
- X-Ray Radiation:

- Filtered X radiation, within the energy range of (40 – 200) KeV,

- Traceability with higher standard is for qualities of narrow spectrum, “N” series, with mean energy from 33 KeV to 164 KeV, denoted as: N-40; N-60; N-80; N-100; N-120; N-150; N-180 and N-200,

- Dose capabilities of the unit for k_{air} is:
 $(2.0 \times 10^{-4} \text{ до } 6.0 \times 10^{-2})$ Gy/h at reference calibration distance of 2m,

- Uncertainty of dose determining $u\% = 4\%$ with approximately 95% confidence probability, $k=2$
- (γ) Gamma radiation:

- For high energy calibration, 740 Gbq (May, 2003) ^{137}Cs nuclide source is used only.

- The energy of the gamma photons are 661.6 KeV.

- The referent radiation is denoted as a S-Cs quality.

- Dose capabilities of the OB6 unit for K_{air} is:
 \[(7.5 \times 10^{-6} \text{ до } 5.0 \times 10^{-2}) \text{ Gy/h.}\]

- Uncertainty of dose determination is $u\% = 3\%$ with approximately 95% confidence probability, $k=2$.
Ionizing Calibration Laboratory
International Audits

Regularly takes part in TLD audits for radiation protection calibrations, organized by the IAEA.

As a result of audits, a difference more than the 3% has never been shown between delivered / IAEA measured. The max. acceptable difference limit set by the IAEA is 7%.
Laboratory is a full member in the IAEA/WHO network of the secondary standard dosimetry laboratories from 2006th.
Thank you for your attention